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MATHEMATICAL PROGRAMMING TECHNIQUES FOR SCHEDULING
SPACELAB CREW ACTIVITIES AND EXPERIMENT OPERATIONS

BY

Frank H. Mathis
Assistant Professor of Mathematics
Baylor University

ABSTRACT

The objective of this report is to investigate
several mathematical programming techniques which may
be applied to the :cheduling of experiments and crew
activities for Spacelab missions. We will discuss the
use of currently known methods, in particular zero-one
programming and heuristic dispatching. In addition we
propose a new type of scheduling algorithm and present
examples to illustrate and test its use.
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INTRODUCTION

In order to obtain a schedule of activities for a Space-
lab mission , a number of experiments must be assigned to
specific times in the mission so that a variety of constraints
are satisfied. Since this problem may be formulated as a
limited resource - project scheduling task, several well-tested
algorithms exist for obtaining a good solution,

The use of zero-one programming as developed by Pritsker,
Watters and Wolf [4] and improved by several authors (see, for
example, [5]) has proved effective on small scheduling problems.
However, run time and computer storage requirements increase
rapidly with the number of variables present and may prove
prohibitive for use on a problem the size of a Spacelab mission.

On the otherhand, dispatching techniques, which take the
experiments to be scheduled in a specific order and assign each
to the first valid time in the mission, produce results with
relatively fast run-time and small storage requirements. How-
ever, these methods may fail to yield a good schedule. The
result is that a great deal of time must be spent investigating
and editing the timeline obtained from a dispatching scheduler
to obtain a better schedule.

Clearly there is a need for algorithms which can obtain a

good quality timeline and not exceed unreasonable time and stor-
age requirements.
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OBJECTIVES

The objective of this report is to investigate current
techniques for scheduling with resource-constraints. In
particular, we discuss the use of zero-one programming and
dispatching methods. We will then introduce a new algorithm
which combines characteristics of both existing methods to
generate a valid schedule of experiments. 'Examples and test
results are presented to illustrate the feasibility of the
use of this algorithm on data typical to Spacelab missions.
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DEFINITION OF PROBLEM

In order to formulate the problem of scheduling a Space-
lab mission, we assume that each experiment has been divided
into a number of individual tasks which we denote as models.
A model in turn is divided into sepsrate steps each of which
demand a specific set of requirements. In addition, each
model may have to be scheduled several times. We denote this
by the number of performances of a model,.

The constraints imposed on the schedule are of the fol-
lowing types. A step may have several resource requirements,
These include the use of a crewman or a certaln piece of
equipment as well as electrical power, computer memory, data
transmission and so forth. Two steps may have a sequencin
constraint. That is, step A must be scheduled before step B
with specified minimum and maximum delays between the two
steps. Each model will have an early and a late start time be-
tween which the first step of each performance must be schea-
uled. Finally, many steps must be scheduled during one of
several specific time intervals of the mission. For example,
a step may require the ability to view a certain star, Thus
that step can only be scheduled during those times in the
Spacelab orbit that the star is visible. We refer to this
type of requirement as s target. We assume that we know the
times at which any target 1s available during the mission.

Thus the problem is to schedule as many as possible of
the specified number of performances of each model such that
all constraints are satisfied. We refer to the resulting
schedule as a timeline.

As an example of the type problem encountered in a Space-
lab mission we will use a data file which was constructed in
June 1980 for Spacelab I. We point out that this file is not
currently in use; however, we feel it can serve to typify the
size and structure of the problem. Table I summerizes this
data.
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TABLE I

DATA for SPACELAB I (June 1980 version)

Length of timeline

Number of models

Number of performances

Total number of steps

Number of crew available

Types of equipment

Other types of resource constraints

Number to targets
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TYPES OF SCHEDULERS

I, Zero-one Programming.

The use of zero-one programming was first applied to
scheduling problems in a series of papers by Pritsker, Watters
and Wolf 4?. In this approach the timeline is divided into
discrete time intervals. Corresponding to each interval a
variable must be defined for every step in the problem, A
variable is assigned the value of "one" if the corresponding
step starts during that time intcrval and a value of "zero"
otherwise. One advantage of this formulation is that the
nroblem is easily represented by a set of linear equalities
and inequalities., We illustrate this below. Refer to Table
IT for a listing of the required variables.

TABLE II
Variables for zero-one programming

i - Subscript referring to a model.

- Subscript referring to a performance.

k - Subscript referring to a step.

t - Subscript referring to a time
interval.

x (ijkt) - A zero-one variable assigned the

value of 1 if step k of perform-
ance j of model i starts in time
period t, and O otherwise.

d (ik) - Duration of the kth step of model 1i.
min (ik) - Minimum delay after step k of inodel i.
max (ik) - Maximum delay after step k of model i.
E (i) - Early start time for model i.

L (1) - Late start time for model i,

N (1) - Number of steps for model i.

P (1) - Number of performances for model i.
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TABLE II

Variables for zero-one programning (cont

m - Subscript referring <o a resource.

r (ikm) - Amount of resource m required by
step k of model 1.

R (mt) - Amount of resource m available at
time t.

The various constraints may be defined as follows:

Sequencing examples for steps k and k+1 of model i, performance j:
L(1) L{
z {t . X(ijkt)} + d(ik) + min(ik)$ 2"4{t . X(ijk+1t)~§
t=E(1) t=t 4}

and
L(i) L(1)

.g(i){t . XUJ“*lt)} t_ﬁ(lf : X(ijkt)} + d(ik) + max(ik).

A
Resour:e example (including targets) for resource m at time t:

P(1) N(1)
a z é:,' {r(ikm) z [X(i"kt)]} £ R(nt).
i j=1 k=1 tet - d(ik)

In addition we require a step definition .onstraint for
each step, This will assure that the step is assigned to at
most one start time.

L)
! x(ijke) < 1, for all i,j and k.
t=E(i)
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Also a performance completion constraint is needed for
each performance, This will allow no step in a performance
to Ee scheduled unless the last step is aiso scheduled.

L(i) N(i) L(i)
Z Z X(ijkt) = 2‘ {N(i) -X(_ij'N(_i_),,t)},for all
t=E(1) k-1 t=E(i) i and j.

Using the above constraints one may program the probliem
to optimize several objective functions. We list some examples.

To obtain the most steps possible we select the X(ijkt)
to maximize.

P(i) N(1) L(i)

2 2 2 2 e

i j=1 k=1 t=E(i)

Similarly maximizing the following functions produces the
most performances, models and experiment time respectively,

P(i) L(i)
2:" £ z X(ij N(i) t),
i je1 t=E (i)
L(i)
s = X(i P(i) N(i) t),
i t=E(i)
P(i) N(i) L(i)
s 5 - S {aaw - xased .
i j=1 k=1 t=E(i)

Since good algorithms exist to handle integer programming
with zero-one variables (see, for example, chapter XI of [3]),
the above approach appears as an attractive means to solve the
scheduling problem. However, if one applies this technique to
Spacelab data, obvious problems arise.
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First the largest time interval which would rcasonably
define the timeline is cone minute., This means that a formu-
lation of 3497 steps over 105 hours would require well over
3 million variables. Although techniques such as the method
of Talbot and Potterson [5] can greatly decrcase this storage
requirement, the time required to solve the zero-one problem
remains substantial., This is hecause the most efficient zero-
one algorithms employ an implicit enumeration technique in
which after a feasible solution is obtained, the method hack
tracks until all possible solutions are directly or indirectly
ohserved. The larger the problem the longer it takes to ac-
comrlish the back tracking. In [S] results for test problems
with up to 800 :zero-one variables and 300 constraints are
reported., Using an IBM 370/168 the authors obtain vun-times
of 6 to 30 seconds CPU. If this were extrapolated to a prob-
lem the size of a Spacelad missicn, run times of 5 to 30 hours
might be expected. These numbers were obtained assuming that
the time increases proportionally with size. A more reason-
ahle assumption would dictate that run-time increases with
the cube of the size. Indecd this is usually the case for
linear programming applications. Extrnpolatin§ under this
assumption would result in a run-time of over %000 ycars!

1T, Dispatching Techniques,

Because of the large storage and long run-time require-
ments of the zero-one formulation, there is a need for alter-
native methods if one is faced with a problem of any site,
The most common approach for scheduling large problems is a
dispatching technique, In these methods one places an order
on the list of steps to be scheduled, then following this
order the steps arc assigned to the first time at which all
constraints are satisfied, This allows for a schedule to be
obtained very rapidly with minimal storage vequirements,
Clearly, the order on the steps is crucial to the structure
of the resulting timeline, In some cases, one may obtain a
gecod timeline by checosing the order based on a heuristic rule
or "rule of thumb". For example, onc may wish to schedule
those steps which require the most resource first, Davis
and Patterson [1] have tested several heuristic dispatching
rules on various scheduling problems, Also see Grone and
Mathis [2] for a discussion of dispatching methods applied
to Spacelab missions,

We note that the current scheduler in use at MSFC is a
dispatching typc program which may use cither a random ordering
or an order fixed by the operator, We will refer to this pro-
gram as TLP for Timeline Program. 1In a test cenvolving 3Q
runs of TLP using the random ordering on our sample data, we
foond that a valid timeline is obtained in less than I minutes

of vlapsed time,
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None of the runs produced a timeline with all of the desired
models scheduled; the average run scheduled approximately S0%
of the models and 87% of the performances,

There are several grohlems with a dispatching scheduler,
There is ne guarantee that the resulting schedule is near
optional, Also, heuristics seem to be very problem dependent.
T“at is, a rule which works well on a particular problem may
prove disastrous for the next problem, Thus, a dispatching
scheduler may gencrate a valid timeline very quickly, but

then a considerahle amount of time must be spent editing the
schedula in order to improve its quality. This is indeed the
case with TLP, The timeline produced by TLP can be converted

into one in which 93% of the models and 90% of the performances

schedule, but only after much investigation and alteration
rcquiring several man-hours of effort,
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A NEW ALGORITHM

We now propose a new algorithm which combines some ele-
ments of both zero-one and dispatching techniques. We wish
to construct a method which has the flcxibility of zero-one
programming so that after a step is scheduled we may later
move the step to another place in the timeline, However,
in order to speed up the algorithm, we will not attempt a
full back tracking procedure bmt rather depend on a heuristic
rule to dictate wﬁich steps should move.

To define our method, we divide constraints into two
groups. A constraint is called step dependent if the amount
available to a step at a particuTar time will change as other
steps are scheduled at the same time. Crew usage, equipment
and other resources are cxamples of step dependent constraints,
Step independent constraints are those which do not depend on
how many steps are running at the same time, Examples arce
early and late start time, sequencing, and targets.

We say that a step is assigned to a feasible time if no
step independent constraint is violated, and the timeline is
valid if all constraints are satisfied.

The general idea of the algorithm is to start with a
feasible timeline and then proceed from the front to the back
of the timeline checking each time for validity. If at any
time it is found that a step dependent constraint is violated,
a particular step scheduled at that time is selected and moved
to a future time in the time.ine.

Nhenever a step is moved, all other steps in the same
model must be checked and possibly moved to assure that max-
imum and minimum delay requirements arc satisfied., We will
not got into the details of this process but rather denote
it by the phrase "move other steps as necessary". If, during
an attempt to move step j to a new time, any step in the same
model can not be recassigned to a feasible time, we will say
that step j cannot be reassigned.

If at any time, a step dependent constraint is violated
but no step can be reassigned, then a step is selected and
removed from the timeline. In this case all other steps in
the same performance must be removed. Of course, the method
of choosing a step to be moved or removed is vital to the
quality of the resulting timeline, As with a dispatching
method, one may use any of severa. heuristic rules to accom-
plish this. In the algorithm to follow, we will move the
step which uses the most of the violated resource,
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This strategy is used in an attempt to cause as many steps
as possible to schedule at tie present time and to minimize
the number of moves required. e do not claim that this
rule is necessarily the best,

We refer the reader to table III for a list of variables
used in the algorithm., A formal statement of the algorithm
follows:

TABLE III

A Variables List for the Scheduling Algorithm

N - Number of steps.

st(j) - Starting time of step j.

d(@) - Duration of step j.

T - Current time under investigation
for validity.

T (01d) - Previous time investigated.

T (new) - Time to which 4 stp may be re-
assigned.

J (T) - Set of indices j such that step
j is scheduled during time T,
That 1is,

St(5)€ T £ st(3) + d(j)

L - Set of indices corresponding to
steps for which time reassignments
were not possible,

M - Number of step dependent constraints,
R (k,T) - Amount of resource Kk available at
time T.
r (k) - Amount of resource k required by
step j.
S (k,T) . Scaled requirement for resource k

at time Ty

S (x,T) =f§ r(jk) } / R (K,T).
i € J(T)

[ - The empty sct,
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ALGORITHM
Assign st (j), j=1,2,+++ N, to its earliest feasihle
start time, Set T=-],
Set T (old) =T ; Set L = ¢,
If {j such that st (3} > T (old)} = @, stop ;
ctherwise set T = min {.st(j) such that st(j)>T (o]d)}‘.
J
Find all j in J (T).
Find k which corresponds to the maximum S (k,T), k=1,2, *-°M,
If S (k,T) £ 1, go to 2 ; otherwise continue,.
I£J (T) - LL = ¢, let j be the first index in L,
remove step j from the timeline and go to 4; otherwise
continue,
Find 1 in J(.)-L to maximize r(ik).
Set T (new) = min { stt1) » d(j) so that j is in J(T) and
j
e(jk) ¢ Ou} .
Attempt to reassign st(i) tc¢ the first feasible time 2
T (new); more other steps as necessary.
If st(i) can be veassigned go to 4; otherwise, add
i to L and go to 7,

We point out that hecause reassignment of a step may

cause other steps to move to a time that has already been
cheched for validity, a single application ot the algorithm
may not produce a valid timeline., 1In practice the algorithm
must be repeated until no moves are necessary.

XXXII-12




R,

EXAMPLES

In order to illustrate the operation of the algorithm,
we present several examples. The first is a test problem

_The problem con-
tains 6 models, 8 individual steps and 3 types of resources.

used in [4]). Also see chapter XII of [3].

The data is summerized in Table 1V,

TABLE IV
DATA FOR EXAMPLE 1.

Earllest Llatest Resource Requlrements
Index Mode | Step Start Duration Start

1 2 3

1 1 1 0 4 1 5 3 2
2 1 2 4 3 5 0 1 1
3 2 1 0 3 5 2 0 2
4 3 1 1 3 4 1 1 1
5 3 2 4 2 7 2 2 0
6 4 1 1 2 7 2 0 0
7 5 1 2 5 4 2 1 1
8 6 1 2 1 8 1 3 0
Amount of Resource Available at all times 8 5 4
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The initial feasible timeline is shown in figure 1. At
T=1 the timeline is valid. Moving to T=2 we find resource 1
has the maximum scaled requirement and step 1 is the greatest
user, We attempt to reassign step 1 to T(new) = 3; however,
this would cause step 2 to be scheduled after its latest start.
Hence, step 1 cannot be reassigned. We next attempt to reassign
step 3 to T(new). This results in the timeline shown in figure 2,

The timeline is now valid at T=2. We proceed with the
algorithm and after six more reassignments we obtain the time-
line shown in figure 3, Note that all times are valid.

It is interesting to note that McMillian [3] obtained the
schedule shown in figure 4 using zero-one programming. Here
the problem is formulated with 33 variables, 37 constraints,
and the objective to minimize schedule length. McMillian re-
ports a run-time of 2.3 seconds CPU on arn IBM 7044, McMillian
also applied a dispatching rule at "minimum slack-time first" to
the above example. Slack time is the amount of time between the
earliest start time and the latest start time. The result is
shown in figure 5. Note that model 3 did not schedule,

As a second example, a computer program was designed to
impliment our algorithm on the DIGITAL VAX-11/780, The first
100 models of the Spacelab data file were selected as an initial
test case. This represents a problem with 1911 steps. The
algorithm successfully ran in 11 minutes 23 seconds of CPU time,
A valid timeline was produced with 1624 steps scheduled., This
represents about 85% of the steps requested.

Finally the same program was applied to the full 218
models in the Spacelab data file. Although not all constraints
were used - some of the maximum and minimum delays were not
checked - the algorithm produced a timeline in 48 minutes of CPU
timg. Of the 3497 steps requested, 3001 or about 867 were sched-
uled.
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CONCLUSIONS AND RECOMMENDATIONS

Based on our preliminary experimental results, the al-
gorithm presented is feasible for use on Spacelab schedulin%
problems, although the resulting timeline seems of comparable
quality with those obtained by TLP while the expense of run-
time is substantially greater than that of TLP. Nevertheless,
we feel that the flexibilfty furnished by the algorithm warrents
further investigation at least with respect to two points.
First more efficient searching and sorting techniques may be
employed in the coding of the algorithm to decrease run-time.
More importantly, the use of alternative heuristic rules for
the choice of steps to move or remove should be examined. We
feel that this investigation could lead to great improvement
in the performance of the algorithm as well as the quality of
the resulting timelirne.
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